TY - JOUR
T1 - Intensity parametrizations for electric-dipole transitions between Stark components in Er3+:Y3 Al5 O12
AU - Burdick, Gary W
AU - Gruber, John B
AU - Nash, Kelly L
AU - Chandra, Sreerenjini
AU - Sardar, Dhiraj K
PY - 2009/12
Y1 - 2009/12
N2 - Trivalent erbium Er3+ (4f11), as a dopant in the laser host material Y3 Al5 O12 (YAG), is a well-known and popular activator ion in a medium having optical, thermal, and mechanical properties suitable for numerous photonic applications. Despite its technological importance, a detailed intensity analysis of transitions between individual Stark components has not previously been attempted. This work presents an intensity analysis for Er:YAG, achieving good agreement between measured and calculated Stark-component transition intensities. Ambiguities in the parametrization due to different possible orientations of the quantization axes are addressed. Use of the “vector crystal field” parametrization resolves additional ambiguities that arise in the transition intensity parameters for low symmetry systems, and allows for a new definition for polarization-resolved Judd-Ofelt parameters, which can have wide-ranging applicability for polarized multiplet-to-multiplet intensity calculations.
AB - Trivalent erbium Er3+ (4f11), as a dopant in the laser host material Y3 Al5 O12 (YAG), is a well-known and popular activator ion in a medium having optical, thermal, and mechanical properties suitable for numerous photonic applications. Despite its technological importance, a detailed intensity analysis of transitions between individual Stark components has not previously been attempted. This work presents an intensity analysis for Er:YAG, achieving good agreement between measured and calculated Stark-component transition intensities. Ambiguities in the parametrization due to different possible orientations of the quantization axes are addressed. Use of the “vector crystal field” parametrization resolves additional ambiguities that arise in the transition intensity parameters for low symmetry systems, and allows for a new definition for polarization-resolved Judd-Ofelt parameters, which can have wide-ranging applicability for polarized multiplet-to-multiplet intensity calculations.
UR - https://digitalcommons.andrews.edu/physics-pubs/46/
U2 - 10.1016/j.jallcom.2008.11.028
DO - 10.1016/j.jallcom.2008.11.028
M3 - Article
VL - 488
SP - 632
EP - 637
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
IS - 2
ER -